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Abstract. Three methods of calculating the on-resonance Rabi frequency for an atomic transition 
are described in detail. These methods are: the use of standard angular momentum coupling 
formula for siaie expansion; the application of the reduclion formula for composite systems; 
and the application of reduction equations for vector operators from Condon and Shortley. It is 
shown that dl three methods are equivalent, in contrast with previously reported difficulties in 
obtaining consistency in the phase. Each method is illustrated by calculating the Rabi frequencies 
for each hyperfine msi t ion  in a nzSipn"P3/2 manifold. The importance of consistency in 
the ordering of the quantum numbers in matrix elements of operator components is discussed. 

1. Introduction 

The Rabi frequency S2 is a measure of the strength of interaction. between the dipole 
D associated with an atomic or molecular transition and the electric field E of exciting 
radiation, the relationship being defined as 

S2 is the cycling frequency as the system is driven repeatedly from the lower to the upper 
state of the transition and back again by absorption and stimulated emission of photons 
from resonant coherent radiation, such as that available from a single-mode laser. Coherent 
cyling at the Rabi frequency is interrupted randomly by non-cohermt events, such as 
spontaneous emission or de-excitation due to collisions. The importance of the role of the 
Rabi frequency was acknowledged with the resurgence of research into atomic spectmscopy 
and the development of the fields of non-linear and quantum optics (see, for example, the 
review of Knight and Milonni 111 and references therein). The Rabi frequency for particular 
transitions has been observed in nutation signals in coherent optical transient experiments 
involving molecules [2] and atoms /3] as well as in the transient fluorescence of atomic 
lines 141. 

Usually, an atomic transition under consideration has a manifold of energy states 
associated with it. The induced dipole matrix elements, and consequently the Rabi 
frequencies, between pairs of these substates will not necessarily be identical. In fact, 
not only is it possible that the values of these quantities vary considerably but also that their 
relative phase can differ by n. Thus, when calculating the response of such a transition to 
incident radiation, care must be taken to ensure accuracy in the sign of each Rabi frequency 
in the manifold so that the quantum interference of terms is 'accounted for correctly. An 
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illustration of the requirements for such calculations has been seen in the modelling of 
substate populations of the sodium D2 line (32S1/2-32P3/2) excited by a single-mode field 
using a full quantum electrodynamic theory [5]. Because of the resolution of modern 
single-mode laser radiation, the energy levels associated with this line have to be written 
in the hyperfine interaction representation, resulting in 24 substates. Of course, due to 
selection rules, not all substates participate in a single-mode excitation. For example, with 
linearly-polarized light inducing z excitation from the 3’S1/2 (F=2) ground state, there are 
12 separate transitions and 17 participating substates. 

The vectors of equation (1) are usually expressed in terms of a spherical basis 161 eq 
(q = -1,O, I), defined in terms of the basis set for Cartesian space as 
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eo = k 

1 . .. 
e+l = +-b f U) .Jz 

so that, for example, D is expressed as 

1 
D = (-l)qDqe-y 

q=-1 
(3) 

and similarly for E.  Using equations (1)-(3), the Rabi frequency for a given excitation 
mode is found to be 

where E is the electric-field amplitude written in terms of the intensity I of the radiation 
after the amplitudes for circularly-polarized light have been chosen to give their standard 
form (E+l = TEC)  161. Thus, for a given transition between lower state IF”;) and upper 
state l F m ~ ) ,  the Rabi frequency is given by 

n(F ,mF,  F’,m>,q) = (-l)iq(l+q)+l --(FmFID,,IF”;). (5) F E O C f i Z  

In the notation employed here, quantum numbers describing a state, such as the principal 
quantum number, which do not play an explicit role in the excitation process are not listed. 
From equation (3, the calculation of the Rabi frequency reduces to the evaluation of the 
dipole matrix element. This is achieved by expressing the matrix element in terms of a 
reduced matrix element common to all of the transitions in the manifold. The reduced 
matrix element can then be related to the Einstein A coefficient or relaxation rate between 
the levels of the reduced system. For the purposes of this work, we shall reduce the matrix 
elements to L representation. 

D is an irreducible tensor operator of rank 1. We are aware of three methods for 
calculating matrix elements of components for such an operator. First, the element can be 
evaluated by the application of the standard angular momentum coupling formula followed 
by use of the Wigner-Eckart theorem. Second, the Wigner-Eckart theorem can be invoked 
initially, followed by the use of the reduction formula for composite systems [7,8]. The 
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third method is to use the appropriate tables of Condon and Shortley [9]. On occasions, 
we have employed all of these methods to calculate Rabi frequencies for manifolds of 
transitions. However, up to now, we were not able to achieve consistency in the phase 
between the first two methods. At the same time, we recognize that there is a choice in sign 
for some terms in the tables of Condon and Shortley. As we have pointed out previously 
[lo], if the calculations are being included in. a model describing a single process, such as 
optical excitation of a transition, each method will yield the same value for an observable 
even with the difference in phase. 

Problems do arise if there is more than one process being modelled, for example, as 
is the case for electron superelastic scattering in which optical excitation of the transition 
is followed by de-excitation by electron collision. The electron de-excitation process is 
described by a density matrix whose elements can only be evaluated by using standard 
angular momentum coupling formula since the density operator is not a vector. We have 
found that, if the Rabi frequencies required for the optical excitation step were calculated 
with the reduction formula for composite systems, the resulting expressions for the electron 
superelastic-scattering differential cross sections did not achieve agreement with previously 
stated results for simpler systems 1111. In particular, the optical pumping parameter for n 
excitation, K, was not identical to the line polarisation PL of the resonance fluorescence 
from the excited state. In this case, for agreement, the Rabi fxquencies had to be calculated 
by the standard angular momentum coupling formula method as well, which is the most 
time consuming of the three. 

In this work, we report the resolution of the inconsistency between the three methods 
of calculating the Rabi frequency. In the next section, the derivation of the expressions for 
the Rabi frequency for a transition in hyperfine representation using the standard angular 
momentum coupling formula and the composite-system reduction formula methods will be 
presented and discussed. In section 3, the equivalence of the three methods of calculation 
will be established. Finally, in section 4, application of all three methods to a n2S1/2-n“Pyz 
transition will be undertaken and the results tabulated. 

2. Methods of calculation 

2.1. Standard angular momentum coupling formula 

A state in hyperfine representation may be expanded as a sum of products of nuclear spin 
states and states in fine structure J represented by 

where I is the nuclear spin quantum number and ( I  Jm,m I I J FmF)  is a Clebsch-Gordan 
coefficient. Throughout this paper, we shall use the higher-symmetry Wigner 3 j symbol 
which is related to the Clebsch-Gordan coefficient by 

Using equations (6) and (7), the dipole matrix element of equation (5 )  can be expanded as 

(FmFID,IF’m’,) = (-I)- J(2F + 1)(2F’+ 1) Zl+/+J’-m.r-m; 

m,m,m>m> 
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D does not operate on the nuclear spin, so the last factor is 6(mr, mi)  and the only non-zero 
term in the sum over mi is m; = m,. The other summations are carried out explicitly using 
the limits imposed by the 3 j  symbols of m, = mF - mr = m; - m’, and the limits of the 
magnetic quantum number mr = -I, . . . ,I. 

The states in the J representation are then expanded in terms of the electron spin states 
ISms) and orbital angular momentum states [LmL) in a similar way, with D not operating 
on the electron spin 
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Once again, the summations are evaluated with ms = m, - m,. = m‘, - m i  and 
ms = 4,. . . , S. Next, the Wigner-Eckart theorem [7,8] is applied to the matrix element 
(.h I Dy IL’mi) 

The condition that the 3 j  symbol is zero if m i  -i q # mL imposes the selection rules for 
the magnetic substates. For YC excitation, m i  = mL and q = 0. Likewise, for U+ (b-) 

excitation, q = 1 (q = -1). 
Finally, the reduced matrix element is evaluated via the relaxation rate r and wavelength 

J. of the transition as 171 

The result of the evaluation of the sequence of equations (8)<11) is then substituted into 
equation (5) to produce the desired Rabi frequency value 

x B ) ( Z F  + 1)(2F’+ 1)fZJ + 1)(2J‘+ 1)(2L+ 1) 

X ( s L’ J’ ) ( L 1 L,’) 
ms mi -m; -mL q mL ‘ 
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2.2. Reduction formula for composife systems 

In this method. the evaluation of reduced matrix elements follows from the theory of 
coupled angular momentum. If an irreducible tensor operator of rank k, Uk, commutes 
with angular momentum JI in the representation 51 Jz Jm,, then its reduced matrix element 
in this representation is found to be [7,8] 

(13) 

where any additional quantum numbers defining the states have been suppressed and 

1:: ; :} 
is a Wigner 6 j  symbol. ,me procedure for evaluating the matrix element (FmFIDQIF’m>) 
is then to first invoke the Wigner-Eckart theorem so that 

We now write the reduced matrix element explicitly as (IJFIIDJIIJ‘F‘) where, as above, 
we assume that D commutes with I .  Applying equation (13) yields 

Since D commutes with the electron spin S, the reduced matrix element in J representation 
can be evaluated in terms of a reduced matrix element in L representation, using 
equation (13) as 

Equation (9.63) in Sobelman’s book [7] is also an expression for (SLJIIDIISL’J‘) which 
is identical in magnitude to equation (16) but differs in the exponent of -1 where L + J‘ 
is written instead of L’ + J .  Since L = L’ i 1 for a dipole transition,-the sign of the two 
expressions could be different. A similar error could also arise in equation (15). We are of 
the opinion that, by using the correct form of the relation (equation (13)), the inconsistencies 
in the sign between the various methods of calculating the Rabi frequency has been resolved. 
In section 3, we shall show the equivalence of the three methods. 

Combining equations (14)-(16) and (11) and substitufing them into equation (5) yields 
an expression for the Rabi frequency 

x J ( 2 F  + 1)(2F‘+ 1)(2J + 1)(2J’+ 1)(2L + 1) 

.( F 
1 F ‘ ) ( J  F Z } { L  J SI 

-mF 4 mF ’ F’ J‘ 1 J‘ L’ 1 J 



214 

3. Equivalence of methods 

3. I .  Standard angular momentum coupling formula and reduction formula for composite 
systems 

In this section, the two methods described in section 2 will be shown to be formally 
equivalent. Consider the irreducible tensor operator U’, which was introduced in 
equation (13). Application of the Wigner-Eckart theorem to the matrix element 
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( J m  j IU; IJ’m‘, ) yields 

Using equation (13), the matrix element can be expressed in terms of the reduced matrix 
element (Jz11U’IIJ;) as 

Applying the angular momentum coupling formula of Section 2.1, followed by the Wigner- 
Eckart theorem, yields for the same mahix element 

( J 1  JzJmJIU,kIJ1 JiJ’m’,) = ( -1) -2J’+z’2+J;-~~-m;-mz (Jzl I U‘I IJ;) 
m , m m ;  

JI Jz J ) ( Ji J; J‘ ) 
mi m2 -mJ ml ml, -m; x J ( 2 J  + 1)(2J’+ 1) 

The sum of the product of the three 3 j  symbols in equation (20) can be put into standard 
form [7,8] by making the following rearrangement using symmetry relations 

For the product of  the 3 j  symbols on the right-hand side of equation (2.1). the standard 
summation is 

( _ I ) J ; + J ’ + J ~ - m ; + m ’ - m r ~  

m ; m w  

where, by symmetry, the sums over m2 and mi are identical to those over -mz and -mi 
respectively. After substitution of relationship (21) into equation (ZO), the argument of -1 
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is -251 + 352 + 2 4  - m ,  - m; - mz + k. This factor can be manipulated so that the 
exponent of - 1 required for equation (22) is available 

- 2 4  + 3 JZ + 2J; - m~ - m; - mz + k 
= (-3 51 + ZJz i J; - m I - m; + k + m; - ml)  + (J1+ Jz + J i  - m2 -mi + m , )  

0 3 )  

By recognizing that mi +m; = m; and that 2(J1 + m i )  is an even integer, the first bracket 
on the right-hand side of equation (23) becomes - J l +  252 + Ji  - m, + k. Therefore, after 
carrying out the summation in equation (201, the expression for the matrix element becomes 

(JlJzJm,IU,kIJ1J;J’m;) = (-1)-’1+2’z+J~-mJ+K (JzllUkllJ;)J(2J+ 1)(2J‘+1) 

.( J k J , ‘ ) {  J k J ’ ]  
-mI q m, J; Ji Jz  

After applying the appropriate symmetry rule for 6 j  symbols, it is clear that the magnitudes 
of equations (19) and (24) are identical and that they differ only in the exponent of -1. 
However, the exponents differ by Z(J1 - 52 + J ) ,  which, by the triangle condition, is an 
even integer. Thus, the signs of equations (19) and (24) are also the same. In section 2, 
the dipole matrix element in the F representation was reduced to L representation via the 
J representation. It is a straightforward extension of the procedure described here to prove 
the equivalence of equations (19) and (24) to show that the two methods of calculating the 
matrix element of section 2 produce identical results. For the two methods, the exponents 
of - 1 differ by 2(S - L + J )  + 2(1- J + F) which again is an even integer. 

3.2. Reduction formula for composite systems and the tables of Condon and Shorfley 

The reduction formula for composite systems method and the tables of Condon and Shortley 
can be shown to be equivalent for each possible dipole matrix element. We shall illustrate 
the procedure with one specific case. All other cases were checked on a personal computer 
using available computer algebra software [12,13]. 

The specific case chosen is the transition between a lower substate to an upper substate 
described by the change in quantum numbers AJ = -1, Am = -1 (i.e. q = -1) and 
A J z  = -1 where J = Jl + 52 and D commutes with 51. First the Wigner-Eckart 
theorem is shown to be equivalent to equations g311 of Condon and Shortley. For this 
&”ition, application of the Wigner-Eckart .theorem yields 

The 3 j symbol can be expressed algebraically from tables of standard formulae [7] resulting 
in 

( J  + m + 1 ) ( J  + m + 2) 
(25 + 3)(25 + 2)(2> + 1) 

] I 2  ] (JIIDIIJ f 1). (JmlD-IIJ + lm + I )  = 

D-, is the magnitude of the relevant component of the vector D as defined by equation (3), 
whereas equations g311 of Condon and Shortley are expressed as matrix elements of the 
vector. Equations (3) and (26) combine to give 

] ’ I z  (JIIDIIJ+ l ) ( i + i j ) .  (27) 
( J + m + l ) ( J + m + 2 )  
(23 + 3 ) ( J  + 1)(2J + 1) (JmjDIJ + l m  + 1 )  = - 
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From the relevant equation of the set 9311 of Condon and Shortley, the matrix element of 
the dipole vector operator for this transition is expressed as 

(JmlDIJ+ l m + 1 )  = - ~ [ ( J + m + 1 ) ( J + m + 2 ) ] ' / 2 ( J ~ D f J + l ) ( i + i j ) .  (28) 
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The Condon and Shortley reduced matrix element of the form (JiD!J + 1) is related to the 
standard reduced matrix element by [7] 

UllDllJ + 1). 
-1 

[(J + 1)(2J + 1)(2J + 3)]1/z 
(J!DiJ + 1) = 

Substituting equation (29) into equation (28) reproduces equation (272, thus confirming the 
equivalence of the Wigner-Eckart theorem and equations 93 11 of Condon and Shortley. 

Next, the reduced matrix elements for this example are evaluated using each method. 
For the reduced formula for composite systems, equation (13) is applied to the matrix 
element 

(JiJzJIIDIIJiJz+ 1 J +  1) 

Expressing the 6 j  symbols algebraically [7] results in equation (30) becoming 

(JI JzJIIDIIJI 52 + 1 1  + 1) 

( J r  + J +  J z  +2)(Ji + J + J2+ 3)(5 + Jz - JI + 1)(J  + Jz - Jj +2) 
(2.7 + 2)(2J2 + 1)(2Jz + 2)(2Jz f 3) = [  1 

x (JzllDIIJz+ 1). (31) 

In arriving at equation (31) from (30), the power of -1 is found to be 2(J1+ Jz + J ) .  The 
sum of the three quantum numbers is an integer since they must satisfy ,the triangle rule. 
Therefore, the power of -1 is an even integer and the right-hand side of equation (31) is 
positive. To evaluate the reduced matrix element from Condon and Shortley, use is made 
of the appropriate expression in equations 1 1 3 8  

where 

P ( J )  = (J - JI + J z ) ( J  + JI + Jz + I). (33) 

Substitution of equation (33) into (32) and transforming to the standard reduced matrix 
elements using equation (29) reproduces equation (30). Hence, the evaluations of a dipole 
matrix element employing the reduction formula for composite systems and the equations 
of Condon and Shortley are also equivalent, ensuring the equivalence of all three method5 
of calculating the Rabi frequency. 
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4. Application 

The three methods will be illustrated here by considering a specific example. Only the 
reduction formula for composite systems method results in the Rabi frequency for a transition 
being able to be expressed as a single-term equation. Inspection of equation (17) reveals 
that the expression for the Rabi frequency can be written as the product of a term describing 
the vector additions and a term containing physical properties and constants: 

Q(F, mF, F’, m>, q )  = C ( F ,  mpI F’, m;, I ,  S, L, L’, J ,  (34) 

where the coefficient is given by 

J F I  L J S  
x ( - : p  $ i ) ( F r  J‘ l ) [ J f  L‘ 1 ) ’  (35) 

We consider the calculation of the Rabi Frequency for the hyperfine transition n2Sl/z(F = 
2, m p  = 2)-nRP3/2(F = 2, mF = 2), which would exist in a single-valence-electron atom 
such as an alkali. The 3 j  and 6j symbols of equation (17) can he evaluated from the tables 
found in standard texts [7,8] or directly from some computer algebra software packages 
[ E ,  131. For this transition. equation-(l7) yields 

Using the standard angular momentum coupling formula, . -  the calculation proceeds as 
follows. First, equation (8) produces 

where the superscript on the matrix elements defines the representation. For the evaluation 
in this case, equation (8) consists of one term only since the requirement of J(m1.m;) 
imposes the condition 

mf=2-mm,=2-m> (38) 

which results in the only permitted values for mJ and m’, being f .  Next. the matrix element 
in the J representation is evaluated by equation (9) 

Application of the Wigner-Eckart theorem, equation (lo), then removes the m, dependence, 
giving 
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The reduced matrix element is evaluqted from equation (1 I) 
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Sequential substitution of equations (41), (40) and (39) into equation (37), followed by 
substitution of the result into equation (5), yields equation (36) again. 

Finally, equation (36) can be obtained from the procedures of Condon and Shortley 
for evaluating the matrix element. Applying the appropriate equation from the set g311 of 
Condon and Shortley, for the particular example considered here, yields 

(221D/22jF = (2iDi2)F2k. (42) 

The Condon and Shortley reduced matrix element in the F representation can be expressed 
in terms of a reduced matrix element in the J representation employing the appropriate 
equation from 1138 which is 

where 

The right-hand side is expressed with an alternate sign which is governed by the choice of 
the phases of the states. To be consistent with the previous two methods of calculation, the 
upper alternative is chosen wherever there is an option available. Taking Jl = I ,  JZ = L, 
J = F and substituting values appropriate to the example results in 

The element in the J representation is further reduced to the L representation using the 
following equation 1 138 from Condon and Shortley: 

Combining equations (42), (45) and (47), the matrix element in the F representation can 
now be expressed in terms of the Condon and Shortley reduced matrix element in the L 
representation 
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where the S quantum number has been omitted in the L representation element. A Condon 
and Shortley reduced matrix element of the form (JITiJ - 1) is related to the standard 
reduced matrix element by [7] 

( J [ [DI IJ  - 1 )  JJ(2J - 1)(2J + l)(JiD!J - 1 ) .  (49) 

In terms of the standard reduced matrix element, equation (46) then becomes 

(2210122)F = $(I  IID1IO)Lk. (50) 

For comparison with the other two methods, the Cartesian coordinates of the Condon and 
Shortley terms must be transformed to the spherical basis set using equation (2). Then, 
evaluating the reduced matrix element from equation (1 1) and substituting into equation (5) 
for the Rabi frequency, the result of equation (36) is once again produced. 

Values of the coefficient C(F, mF, F', mk, I, S, L ,  L', J ,  J', q )  for an nzS1D-nnP3/z 
manifold of transitions are given in table 1. 

Table 1. Values of the Rabi frequency wemcient C(F, mp. F', m;, I ,  S, L ,  L', I ,  J', q)  for an 
n2S~/z-nnPg,i manifold of transitions. 

1 0  1/2/? 
I 1  - 5 / a  
1 2  l / f i  

0 2  -1 12 

- 1  2 -I/& 

1 1 1/m If453 
I 2 -1l.h -112 
1 3 1I.m 1145 
0 1  I/& 
0 2 1143 IIm 

-1 2 -l/& 
- 1  3 -1 -2/& 

-1 0 
-1 1 

n2S , / z (F  = 2)-d2P3/2(F) 

0 3 -I/& -414% 
-1 1 

-5/m 
-112 

.In the calculation of the dipole matrix element by any of the three methods, the ordering 
of the quantum numbers in a state expansion is of crucial importance in obtaining consistency 
in the sign. In each case, we have maintained the convention of writing the element as 
(JI JzJmJIDIJ1 J;J'm;), where D commutes with J1, which, in these calculations, is either 
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I or S. A different convention would be required if the matrix element was written such 
that D commuted with Jz. For example, in equation (43). the opposite sign is chosen to 
that of the convention chosen for when D commutes with J1. Since all other signs remain 
unchanged, the net effect of rewriting the matrix element would be to invert the sign of the 
Rabi frequency for the n 2 S l p ( F  = 2, mF = 2)-nRP3,2(F = 2, mF = 2) transition. For the 
standard angular momentum coupling formula method, the assumption that D commutes 
with JZ amounts to reordering the 51 and JZ quantum numbers in the Clebsch-Gordan 
coefficients and, hence, the 3 j symbols. Using the relationship for 3 j symbols that 
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equations (8) and (9) produce a change in sign for this transition. With respect to the 
reduction formula for composite systems method, an alternate form of equation (13) is 
required if the operator commutes with Jz, namely 

Evaluating the reduced matrix elements of equations (15) and (16). with the ordering of I 
and J and S and L reversed to accommodate the altered commutation convention, once again 
changes the sign of the Rabi frequency. Hence, changing the ordering convention reverses 
the sign of the Rabi frequency for the paaicular transition considered here, however, the 
three methods remain consistent. The values of the Rabi-frequency coefficient, calculated 
for the nzS,/2-nt2P3/lz transition under the altered convention display, changed signs for 
all transitions for which A F  was equal to zero. Observable quantities calculated using 
the amended table of values will be identical to those using table 1 since the phase of the 
individual Rabi frequency cannot be detected. However, if the observable was the result of 
more than one process, care would be required to be consistent in the choice of the ordering 
convention. 

5. Conclusion 

Three different methods of calculating the dipole matrix elements necessary for the 
evaluation of Rabi frequencies have been summarized. Contrary to previous work, we 
have shown that each of the methods produces the identical result as long as care is taken 
to be consistent in the convention used in ordering the quantum numbers in the matrix 
elements. Without doubt, the most convenient method is to apply the reduction formula for 
composite systems, since this is the only method that results in a single term expression of 
the form of equation (17) for the Rabi frequency. 

The need to evaluate matrix elements arises in other applications; for example, in 
expressing a density matrix element in hyperfine representation in terms of its element in 
the L representation. Since there is no tensor operator involved, the only method suitable is 
that using the standard angular momentum coupling formula. Alternatively, if the complete 
vector property of a matrix element is required, when calculating fluorescence intensity 
with the detection operator cm f . D [ m )  (mlf’. D for example, the method of Condon and 
Shortley is the most appropriate. 
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